Extensions 1→N→G→Q→1 with N=C38 and Q=C22

Direct product G=N×Q with N=C38 and Q=C22
dρLabelID
C22×C38152C2^2xC38152,12

Semidirect products G=N:Q with N=C38 and Q=C22
extensionφ:Q→Aut NdρLabelID
C38⋊C22 = C22×D19φ: C22/C2C2 ⊆ Aut C3876C38:C2^2152,11

Non-split extensions G=N.Q with N=C38 and Q=C22
extensionφ:Q→Aut NdρLabelID
C38.1C22 = Dic38φ: C22/C2C2 ⊆ Aut C381522-C38.1C2^2152,3
C38.2C22 = C4×D19φ: C22/C2C2 ⊆ Aut C38762C38.2C2^2152,4
C38.3C22 = D76φ: C22/C2C2 ⊆ Aut C38762+C38.3C2^2152,5
C38.4C22 = C2×Dic19φ: C22/C2C2 ⊆ Aut C38152C38.4C2^2152,6
C38.5C22 = C19⋊D4φ: C22/C2C2 ⊆ Aut C38762C38.5C2^2152,7
C38.6C22 = D4×C19central extension (φ=1)762C38.6C2^2152,9
C38.7C22 = Q8×C19central extension (φ=1)1522C38.7C2^2152,10

׿
×
𝔽